Concomitant detection of beta-amyloid peptides with N-terminal truncation and different C-terminal endings in cortical plaques from cases with Alzheimer's disease, senile monkeys and triple transgenic mice

在阿尔茨海默病患者、老年猴和三重转基因小鼠的皮质斑块中同时检测具有 N 端截短和不同 C 端末端的 β-淀粉样肽

阅读:5
作者:Wolfgang Härtig, Simone Goldhammer, Ute Bauer, Florian Wegner, Oliver Wirths, Thomas A Bayer, Jens Grosche

Abstract

The disturbed metabolism of beta-amyloid peptides generated from amyloid precursor protein is widely considered as a main factor during the pathogenesis of Alzheimer's disease. A neuropathological hallmark in the brains from cases with Alzheimer's disease are senile plaques mainly composed of hardly soluble beta-amyloid peptides comprising up to 43 amino acids. Age-dependent cortical beta-amyloidosis was also shown in several transgenic mice and old individuals from various mammalian species, e.g., non-human primates. Beta-amyloid(1-42) is believed to be the main component in the core of senile plaques, whereas less hydrophobic beta-amyloid(1-40) predominantly occurs in the outer rim of plaques. Amino-terminally truncated pyroglutamyl-beta-amyloid(pE3-x) was recently found to be a beta-amyloid species of high relevance to the progression of the disease. While a few biochemical studies provided data on the co-occurrence of several beta-amyloid forms, their concomitant histochemical detection is still lacking. Here, we present a novel triple immunofluorescence labelling of amino- and differently carboxy-terminally truncated beta-amyloid peptides in cortical plaques from a case with Alzheimer's disease, senile macaques and baboons, and triple transgenic mice with age-dependent beta-amyloidosis and tau hyperphosphorylation. Additionally, beta-amyloid(pE3-x) and total beta-amyloid were concomitantly detected with beta-amyloid peptides ending with amino acid 40 or 42, respectively. Simultaneous staining of several beta-amyloid species reveals for instance vascular amyloid containing beta-amyloid(pE3-x) in Alzheimer's disease and monkeys, and may contribute to the further elucidation of beta-amyloidosis in neurodegenerative disorders and animal models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。