The role of a recombinant fragment of laminin-332 in integrin alpha3beta1-dependent cell binding, spreading and migration

层粘连蛋白-332 重组片段在整合素 α3β1 依赖性细胞结合、扩散和迁移中的作用

阅读:4
作者:Hironobu Yamashita, Manisha Tripathi, Mark P Harris, Shanshan Liu, Brandy Weidow, Roy Zent, Vito Quaranta

Abstract

The extracellular matrix (ECM) is thought to be an essential component of tissue scaffolding and engineering because it fulfills fundamental functions related to cell adhesion, migration, and three-dimensional organization. Natural ECM preparations, however, are challenging to work with because they are comprised of macromolecules that are large and insoluble in their functional state. Functional fragments of ECM macromolecules are a viable answer to this challenge, as demonstrated by the RGD-based engineered scaffolds, where the tri-peptide, Arg-Gly-Asp (RGD), represents the minimal functional unit of fibronectin and related ECM. Laminins (Ln) are main components of epithelial tissues, since they enter into the composition of basement membranes. Application of Ln to epithelial tissue engineering would be desirable, since they could help mimic ideal functional conditions for both lining and glandular epithelial tissues. However, functional fragments of Ln that could be used in artificial settings have not been characterized in detail. In this paper, we describe the production and application of the recombinant LG4 (rLG4) fragment of laminin-332 (Ln-332), and show that it mimics three fundamental functional properties of Ln-332: integrin-mediated cell adhesion, spreading, and migration. Adhesive structures formed by cells on rLG4 closely resemble those formed on Ln-332, as judged by microscopy-based analyses of their molecular composition. As on Ln-332, focal adhesion kinase (FAK) is phosphorylated in cells adhering to rLG4, and colocalized with other focal adhesion components. We conclude that rLG4 could be a useful substitute to recapitulate, in vitro, the tissue scaffolding properties of Ln-332.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。