Hexavalent chromium caused DNA damage repair and apoptosis via the PI3K/AKT/FOXO1 pathway triggered by oxidative stress in the lung of rat

六价铬通过氧化应激引发的 PI3K/AKT/FOXO1 通路引起大鼠肺组织 DNA 损伤修复和细胞凋亡

阅读:7
作者:Lixia Zhang, Ningning Li, Xiuzhi Zhang, Hui Wu, Shanfa Yu

Abstract

Hexavalent chromium [Cr(VI)] is an occupational carcinogen that accumulates in the lungs and causes lung injury and even lung cancer. 36 SD male rats received inhalable intratracheal instillation of Cr(VI) (0.05, 0.25 mg Cr/kg) or the same volume (3 ml/kg) of normal saline weekly for 28 days (total 5 times). After 28 days of exposure, half of the rats in each group were sacrificed for investigation, and the rest stopped exposure and began to be self-repaired for two weeks. Histopathology analyses revealed that Cr(VI) induced slight dilatation and hemorrhage of perialveolar capillaries, pulmonary bronchodilation, and congestion with peripheral flaky-like necrosis accompanied by inflammatory cell infiltration, especially the 0.25 mg Cr/kg group. Cr(VI) exposure caused the increase of blood Cr, urinary Cr, MDA, urinary 8-hydroxy-2' -deoxyguanosine (8-OHdG), and the decrease of GSH and MDA, while two-week repair only reduced urinary Cr. Exposure to Cr(VI) significantly upregulated FOXO1 and downregulated p-AKT and p-FOXO1 for two weeks. PI3K in the 0.25 mg Cr/kg group was inhibited after two weeks of repair. Cr(VI) exposure mainly promoted GADD45a and CHK2 in the exposure group, promoted Bim, Bax/Bcl-2, and suppressed Bcl-2 and Bcl-xL in the repair group. These results demonstrate that Cr(VI) may induce DNA damage repair and apoptosis in the lung by activating the PI3K/AKT/FOXO1 pathway. Two-week repair may alleviate oxidative stress and DNA damage induced by Cr(VI) exposure but couldn't eliminate its effects. This study provides a new perspective for exploring the Cr(VI) induced lung cancer mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。