FoxO3 activation in hypoxic tubules prevents chronic kidney disease

缺氧小管中的 FoxO3 激活可预防慢性肾脏疾病

阅读:6
作者:Ling Li, Huimin Kang, Qing Zhang, Vivette D D'Agati, Qais Al-Awqati, Fangming Lin

Abstract

Acute kidney injury (AKI) can lead to chronic kidney disease (CKD) if injury is severe and/or repair is incomplete. However, the pathogenesis of CKD following renal ischemic injury is not fully understood. Capillary rarefaction and tubular hypoxia are common findings during the AKI to CKD transition. We investigated the tubular stress response to hypoxia and demonstrated that a stress responsive transcription factor, FoxO3, was regulated by prolyl hydroxylase. Hypoxia inhibited FoxO3 prolyl hydroxylation and FoxO3 degradation, thus leading to FoxO3 accumulation and activation in tubular cells. Hypoxia-activated Hif-1α contributed to FoxO3 activation and functioned to protect kidneys, as tubular deletion of Hif-1α decreased hypoxia-induced FoxO3 activation, and resulted in more severe tubular injury and interstitial fibrosis following ischemic injury. Strikingly, tubular deletion of FoxO3 during the AKI to CKD transition aggravated renal structural and functional damage leading to a more profound CKD phenotype. We showed that tubular deletion of FoxO3 resulted in decreased autophagic response and increased oxidative injury, which may explain renal protection by FoxO3. Our study indicates that in the hypoxic kidney, stress responsive transcription factors can be activated for adaptions to counteract hypoxic insults, thus attenuating CKD development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。