Acetate is a bioenergetic substrate for human glioblastoma and brain metastases

醋酸盐是人类胶质母细胞瘤和脑转移瘤的生物能底物

阅读:5
作者:Tomoyuki Mashimo, Kumar Pichumani, Vamsidhara Vemireddy, Kimmo J Hatanpaa, Dinesh Kumar Singh, Shyam Sirasanagandla, Suraj Nannepaga, Sara G Piccirillo, Zoltan Kovacs, Chan Foong, Zhiguang Huang, Samuel Barnett, Bruce E Mickey, Ralph J DeBerardinis, Benjamin P Tu, Elizabeth A Maher, Robert M Bachoo

Abstract

Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using (13)C-NMR analysis of brain tumors resected from patients during infusion of (13)C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here, we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-(13)C]acetate and can do so while simultaneously oxidizing [1,6-(13)C]glucose. The tumors do not oxidize [U-(13)C]glutamine. In vivo oxidation of [1,2-(13)C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together, the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。