Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34

脱落酸是持久小麦抗病基因 Lr34 编码的 ABC 转运蛋白的底物

阅读:5
作者:Simon G Krattinger, Joohyun Kang, Stephanie Bräunlich, Rainer Boni, Harsh Chauhan, Liselotte L Selter, Mark D Robinson, Marc W Schmid, Elena Wiederhold, Goetz Hensel, Jochen Kumlehn, Justine Sucher, Enrico Martinoia, Beat Keller

Abstract

The wheat Lr34res allele, coding for an ATP-binding cassette transporter, confers durable resistance against multiple fungal pathogens. The Lr34sus allele, differing from Lr34res by two critical nucleotide polymorphisms, is found in susceptible wheat cultivars. Lr34res is functionally transferrable as a transgene into all major cereals, including rice, barley, maize, and sorghum. Here, we used transcriptomics, physiology, genetics, and in vitro and in vivo transport assays to study the molecular function of Lr34. We report that Lr34res results in a constitutive induction of transcripts reminiscent of an abscisic acid (ABA)-regulated response in transgenic rice. Lr34-expressing rice was altered in biological processes that are controlled by this phytohormone, including dehydration tolerance, transpiration and seedling growth. In planta seedling and in vitro yeast accumulation assays revealed that both LR34res and LR34sus act as ABA transporters. However, whereas the LR34res protein was detected in planta the LR34sus version was not, suggesting a post-transcriptional regulatory mechanism. Our results identify ABA as a substrate of the LR34 ABC transporter. We conclude that LR34res-mediated ABA redistribution has a major effect on the transcriptional response and physiology of Lr34res-expressing plants and that ABA is a candidate molecule that contributes to Lr34res-mediated disease resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。