A congenital activating mutant of WASp causes altered plasma membrane topography and adhesion under flow in lymphocytes

WASp 的先天性激活突变导致淋巴细胞的质膜拓扑结构和流动下的粘附发生改变

阅读:5
作者:Siobhan O Burns, David J Killock, Dale A Moulding, Joao Metelo, Joao Nunes, Ruth R Taylor, Andrew Forge, Adrian J Thrasher, Aleksandar Ivetic

Abstract

Leukocytes rely on dynamic actin-dependent changes in cell shape to pass through blood vessels, which is fundamental to immune surveillance. Wiskott-Aldrich Syndrome protein (WASp) is a hematopoietic cell-restricted cytoskeletal regulator important for modulating cell shape through Arp2/3-mediated actin polymerization. A recently identified WASp(I294T) mutation was shown to render WASp constitutively active in vivo, causing increased filamentous (F)-actin polymerization, high podosome turnover in macrophages, and myelodysplasia. The aim of this study was to determine the effect of WASp(I294T) expression in lymphocytes. Here, we report that lymphocytes isolated from a patient with WASp(I294T), and in a cellular model of WASp(I294T), displayed abnormal microvillar architecture, associated with an increase in total cellular F-actin. Microvillus function was additionally altered as lymphocytes bearing the WASp(I294T) mutation failed to roll normally on L-selectin ligand under flow. This was not because of defects in L-selectin expression, shedding, cytoskeletal anchorage, or membranal positioning; however, under static conditions of adhesion, WASp(I294T)-expressing lymphocytes exhibited altered dynamic interaction with L-selectin ligand, with a significantly reduced rate of adhesion turnover. Together, our results demonstrate that WASp(I294T) significantly affects lymphocyte membrane topography and L-selectin-dependent adhesion, which may be linked to defective hematopoiesis and leukocyte function in affected patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。