Resveratrol Improves Synaptic Plasticity in Hypoxic-Ischemic Brain Injury in Neonatal Mice via Alleviating SIRT1/NF-κB Signaling-Mediated Neuroinflammation

白藜芦醇通过缓解 SIRT1/NF-κB 信号介导的神经炎症改善新生小鼠缺氧缺血性脑损伤中的突触可塑性

阅读:6
作者:Xin Peng #, Jun Wang #, Juan Peng, Hongqun Jiang, Kai Le

Abstract

Neonatal hypoxic-ischemic encephalopathy (HIE) is an obstinate disease that troubles neonatologists. At present, cognitive impairment after HIE has received increasing attention. Synaptic plasticity determines the development of cognitive function, so it is urgent to develop new drugs that can improve HIE-induced cognitive impairment. Hypoxia-ischemia (HI)-induced neuroinflammation affects synaptic plasticity. As a SIRT1 agonist, resveratrol has a powerful anti-inflammatory effect, but whether it has an effect on impaired synaptic plasticity in HIE and the potential mechanism remain unclear. In the present study, resveratrol was used to intervene in hypoxic-ischemic brain injury (HIBI) mice, and the effects on hippocampal synaptic plasticity and further mechanisms were explored through performing neurobehavioral, morphological observations, Golgi sliver staining, western blotting, and quantitative real-time polymerase chain reaction experiments. We first found that resveratrol improves HI-induced long-term cognitive and memory deficits, and then we found that resveratrol reduces hippocampal neuronal damage and increases dendritic spine density and the expression of synaptic proteins. Finally, we found that this effect may be exerted by regulating the neuroinflammatory response mediated by the SIRT1/NF-κB axis. This study provides a new theoretical basis for resveratrol to prevent long-term neurological dysfunction following HIBI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。