Prioritizing de novo autism risk variants with calibrated gene- and variant-scoring models

使用校准的基因和变异评分模型对新生自闭症风险变异进行优先排序

阅读:5
作者:Yuxiang Jiang, Jorge Urresti, Kymberleigh A Pagel, Akula Bala Pramod, Lilia M Iakoucheva, Predrag Radivojac

Abstract

Whole-exome and whole-genome sequencing studies in autism spectrum disorder (ASD) have identified hundreds of thousands of exonic variants. Only a handful of them, primarily loss-of-function variants, have been shown to increase the risk for ASD, while the contributory roles of other variants, including most missense variants, remain unknown. New approaches that combine tissue-specific molecular profiles with patients' genetic data can thus play an important role in elucidating the functional impact of exonic variation and improve understanding of ASD pathogenesis. Here, we integrate spatio-temporal gene co-expression networks from the developing human brain and protein-protein interaction networks to first reach accurate prioritization of ASD risk genes based on their connectivity patterns with previously known high-confidence ASD risk genes. We subsequently integrate these gene scores with variant pathogenicity predictions to further prioritize individual exonic variants based on the positive-unlabeled learning framework with gene- and variant-score calibration. We demonstrate that this approach discriminates among variants between cases and controls at the high end of the prediction range. Finally, we experimentally validate our top-scoring de novo mutation NP_001243143.1:p.Phe309Ser in the sodium/potassium-transporting ATPase ATP1A3 to disrupt protein binding with different partners.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。