Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway

恩格列净通过 AMPK/SP1/PGAM5 通路减轻线粒体裂变改善糖尿病肾小管损伤

阅读:5
作者:Xiangyang Liu, Chaofei Xu, Linxin Xu, Xiaoyu Li, Hongxi Sun, Mei Xue, Ting Li, Xiaochen Yu, Bei Sun, Liming Chen

Background and purpose

Excessive mitochondrial fission was observed in diabetic kidney disease (DKD). Phosphoglycerate mutase family member 5 (PGAM5) plays an important role in mitochondrial fission by dephosphorylating the dynamin-related protein 1 at Ser637 (DRP1S637). Whether PGAM5 participates in the mitochondrial fission in diabetic renal tubular injury is unknown. Clinical trials have observed encouraging effect of Sodium-glucose cotransporter 2 (SGLT2) inhibitors on DKD though the underling mechanisms remain unclear. Experimental approach: We used KK-Ay mice as diabetic model and Empagliflozin (Empa) were administrated by oral gavage. The mitochondrial fission and the expressions of phosphorylated AMP-activated protein kinase (p-AMPK), specificityprotein1 (SP1), PGAM5 and DRP1S637 were tested. We also examined these changes in HK2 cells that cultured in normal glucose (NG), high glucose (HG) and high glucose+Empa (HG + Empa) environment. Then we verified our deduction using AMPK activator (5-aminoimidazole-4-carboximide Riboside, AICAR), inhibitor (Compound C), si-SP1 and si-PGAM5. Lastly, we testified the interaction between SP1 and the PGAM5promotor by CHIP assay. Key

Purpose

Excessive mitochondrial fission was observed in diabetic kidney disease (DKD). Phosphoglycerate mutase family member 5 (PGAM5) plays an important role in mitochondrial fission by dephosphorylating the dynamin-related protein 1 at Ser637 (DRP1S637). Whether PGAM5 participates in the mitochondrial fission in diabetic renal tubular injury is unknown. Clinical trials have observed encouraging effect of Sodium-glucose cotransporter 2 (SGLT2) inhibitors on DKD though the underling mechanisms remain unclear. Experimental approach: We used KK-Ay mice as diabetic model and Empagliflozin (Empa) were administrated by oral gavage. The mitochondrial fission and the expressions of phosphorylated AMP-activated protein kinase (p-AMPK), specificityprotein1 (SP1), PGAM5 and DRP1S637 were tested. We also examined these changes in HK2 cells that cultured in normal glucose (NG), high glucose (HG) and high glucose+Empa (HG + Empa) environment. Then we verified our deduction using AMPK activator (5-aminoimidazole-4-carboximide Riboside, AICAR), inhibitor (Compound C), si-SP1 and si-PGAM5. Lastly, we testified the interaction between SP1 and the PGAM5promotor by CHIP assay. Key

Results

The mitochondrial fission and the expression of SP1, PGAM5 increased and the expression of p-AMPK, DRP1S637 decreased in diabetic or HG environment. These changes were all reversed in Empa or AICAR treated groups. These reversal effects of Empa could be diminished by Compound C. Either si-SP1 or si-PGAM5 could alleviate the mitochondrial fission without affection on AMPK phosphorylation. Finally, the CHIP assay confirmed the interaction between SP1 and the PGAM5 promotor. Conclusions and implications: The PGAM5 aggravated the development of diabetic renal tubular injury and the Empa could improve the DKD by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。