Ginger metabolites and metabolite-inspired synthetic products modulate intracellular calcium and relax airway smooth muscle

姜代谢物和代谢物启发的合成产品调节细胞内钙并放松气道平滑肌

阅读:5
作者:Elvedin Luković, Jose F Perez-Zoghbi, Yi Zhang, Yingdong Zhu, Shengmin Sang, Charles W Emala

Abstract

Asthma affects millions of people worldwide and its prevalence is increasing. It is characterized by chronic airway inflammation, airway remodeling, and pathologic bronchoconstriction, and it poses a continuous treatment challenge with very few new therapeutics available. Thus, many asthmatics turn to plant-based complementary products, including ginger, for better symptom control, indicating an unmet need for novel therapies. Previously, we demonstrated that 6-shogaol (6S), the primary bioactive component of ginger, relaxes human airway smooth muscle (hASM) likely by inhibition of phosphodiesterases (PDEs) in the β-adrenergic (cyclic nucleotide PDEs), and muscarinic (phospholipase C, PLC) receptor pathways. However, oral 6S is extensively metabolized and it is unknown if the resulting metabolites remain bioactive. Here, we screened all the known human metabolites of 6S and several metabolite-based synthetic derivatives to better understand their mechanism of action and structure-function relationships. We demonstrate that several metabolites and metabolite-based synthetic derivatives are able to prevent Gq-coupled stimulation of intracellular calcium [Ca2+]i and inositol trisphosphate (IP3) synthesis by inhibiting PLC, similar to the parent compound 6S. We also show that these compounds prevent recontraction of ASM after β-agonist relaxation likely by inhibiting PDEs. Furthermore, they potentiate isoproterenol-induced relaxation. Importantly, moving beyond cell-based assays, metabolites also retain the functional ability to relax Gq-coupled-contractions in upper (human) and lower (murine) airways. The current study indicates that, although oral ginger may be metabolized rapidly, it retains physiological activity through its metabolites. Moreover, we are able to use naturally occurring metabolites as inspiration to develop novel therapeutics for brochoconstrictive diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。