KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism

KLF2 通过诱导线粒体自噬和改变线粒体代谢来调节牙髓来源的干细胞分化

阅读:4
作者:Jyotirindra Maity, Moonmoon Deb, Carl Greene, Hiranmoy Das

Abstract

To define the regulatory role of Kruppel-like factor 2 (KLF2) during osteoblast (OB) differentiation of dental pulp-derived stem cell (DPSC)s, herein, we show that the levels of KLF2 and autophagy-related molecules were significantly increased in differentiated cells. Gain-of-function and loss-of-function approaches of KLF2 confirmed that KLF2 modulated autophagic and OB differentiation-related molecules. In addition, knockdown of the autophagic molecule (ATG7 or BECN1) in DPSCs resulted in reduced levels of KLF2 and OB differentiation-related molecules. Conversely, the induction of autophagy increased levels of KLF2 and OB differentiation-related molecules. Moreover, OB differentiation induced mitophagy and mitochondrial membrane potential-related molecules. In addition, OB differentiation reduced the generation of total and mitochondrial ROS productions and induced intracellular Ca2+ production. Measurements of glycolysis and oxidative phosphorylation simultaneously in live cells revealed that OB differentiation decreased the oxygen consumption rate, which is an indicator of mitochondrial respiration and reduced the level of ATP production. Furthermore, flux analysis also revealed that OB differentiation increased the extracellular acidification rate (ECAR) in the non-glycolytic acidification, and the glycolytic capacity conditions, increasing the lactate production and reducing the metabolic activity of the cells. Thus, a metabolic shift from mitochondrial respiration to the glycolytic pathway was observed during OB differentiation. Finally, chromatin immunoprecipitation (ChIP) analysis confirmed that the KLF2 and active epigenetic marks (H3K27Ac and H3K4me3) were upregulated in the promoter region of ATG7 during OB differentiation. These results provide evidence that the mitophagy process is important during OB differentiation, and KLF2 critically regulates it.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。