Acquired resistance to temozolomide in glioma cell lines: molecular mechanisms and potential translational applications

胶质瘤细胞系对替莫唑胺的获得性耐药性:分子机制和潜在的转化应用

阅读:6
作者:Jihong Zhang, Malcolm F G Stevens, Charles A Laughton, Srinivasan Madhusudan, Tracey D Bradshaw

Abstract

Treatment for glioblastoma multiforme includes the alkylating agent temozolomide combined with ionizing radiation. Persistent O6-guanine methylation by temozolomide in O6-methylguanine methyl transferase negative tumors causes cytotoxic lesions recognized by DNA mismatch repair, triggering apoptosis. Resistance (intrinsic or acquired) presents obstacles to successful temozolomide treatment, limiting drug efficacy and life expectancy. Two glioma cell lines, SNB19 and U373, sensitive to temozolomide (GI(50) values 36 and 68 microM, respectively) were exposed to increasing temozolomide concentrations (1-100 microM). Variant cell lines (SNB19VR, U373VR) were generated that displayed acquired temozolomide resistance (GI(50) values 280 and 289 microM, respectively). Cross-resistance to mitozolomide was observed in U373VR cells only. In clonogenic and MTT assays, methylguanine methyltransferase (MGMT) depletion using O6-benzylguanine sensitized U373VR cells to temozolomide, indicating the resistance mechanism involves MGMT re-expression. Indeed, Western blot analyses revealed MGMT protein in cell lysates. In SNB19VR cells, down-regulation of MSH6 message and protein expression may confer temozolomide tolerance. Inhibition of poly(ADP-ribose) polymerase-1 (a key base excision repair (BER) enzyme) partially restored sensitivity, and DNA repair gene arrays demonstrated up-regulation (>5-fold) of BER gene NTL1 in SNB19VR cells. In conclusion, we have developed two glioma cell lines whose distinct mechanisms of acquired resistance to temozolomide, involving expression of MGMT, or inactivation of DNA mismatch repair and recruitment of BER enzymes, are consistent with clinical observations. These cell lines provide valuable models for the development of strategies to combat temozolomide resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。