Background
Electrospun (e-spun) nanofibers for wound dressing have attracted wide attention due to its large specific surface area, large porosity and breathability. Compared with solution electrospinning (e-spinning), melt e-spinning is more bio-friendly without toxic solvent participation, which provides the possibility of in situ e-spinning on wounds directly. However, previously reported melt e-spinning devices were usually bulky and cumbersome due to their necessary heating unit, and different components were separated to avoid electrostatic interference.
Conclusions
PCL fibrous membrane has good biocompatibility and can be in situ electrospun to wound surface as a wound dressing by the portable melt e-spinning gun. Besides wound dressing, this hand-held melt e-spinning gun may be used in 3D printing and experimental teaching demonstration aids.
Results
In this article, we report on a self-powered hand-held melt e-spinning gun which can work without any external power supply (outdoors). The problem of electrostatic interference for this integrated device was solved by using a special high heat transfer insulation unit. The apparatus is easy and safe to operate by a single hand due to its small volume (24 × 6 × 13 cm3) and light weight (about 450 g). Some biodegradable polymers, for example, polycaprolactone (PCL) fibers were successful e-spun onto wounds directly by using this dressing gun. Conclusions: PCL fibrous membrane has good biocompatibility and can be in situ electrospun to wound surface as a wound dressing by the portable melt e-spinning gun. Besides wound dressing, this hand-held melt e-spinning gun may be used in 3D printing and experimental teaching demonstration aids.
