Leucine Reduced Blood-Brain Barrier Disruption and Infarct Size in Early Cerebral Ischemia-Reperfusion

亮氨酸减少早期脑缺血再灌注中的血脑屏障破坏和梗塞面积

阅读:6
作者:Oak Z Chi, Xia Liu, Jedrick Magsino, Harvey R Weiss

Abstract

A disruption of the blood-brain barrier (BBB) is a crucial pathophysiological change that can impact the outcome of a stroke. Ribosomal protein S6 (S6) and protein kinase B (Akt) play significant roles in early cerebral ischemia-reperfusion injury. Studies have suggested that branched-chain amino acids (BCAAs) may have neuroprotective properties for spinal cord or brain injuries. Therefore, we conducted research to investigate if leucine, one of the BCAAs, could offer neuroprotection and alter BBB disruption, along with its effects on the phosphorylation of S6 and Akt during the early phase of cerebral ischemia-reperfusion, specifically within the thrombolytic therapy time window. In rats, ten min after left middle cerebral artery occlusion (MCAO), 5 µL of 20 mM L-leucine or normal saline was injected into the left lateral ventricle. After two hours of reperfusion following one hour of MCAO, we determined the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid to assess the BBB disruption, infarct size, and phosphorylation of S6 and Akt. Ischemia-reperfusion increased the Ki (+143%, p < 0.001) and the intra-cerebroventricular injection of leucine lowered the Ki in the ischemic-reperfused cortex (-34%, p < 0.001). Leucine reduced the percentage of cortical infarct (-42%, p < 0.0001) out of the total cortical area. Ischemia-reperfusion alone significantly increased the phosphorylation of both S6 and Akt (p < 0.05). However, the administration of leucine had no further effect on the phosphorylation of S6 or Akt in the ischemic-reperfused cortex. This study suggests that an acute increase in leucine levels in the brain during early ischemia-reperfusion within a few hours of stroke may offer neuroprotection, possibly due to reduced BBB disruption being one of the major contributing factors. Leucine did not further increase the already elevated phosphorylation of S6 or Akt by ischemia-reperfusion under the current experimental conditions. Our data warrant further studies on the effects of leucine on neuronal survival and its mechanisms in the later stages of cerebral ischemia-reperfusion.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。