Differential expression of aerobic oxidative metabolism-related proteins in diabetic urinary exosomes

糖尿病尿液外泌体中有氧氧化代谢相关蛋白的差异表达

阅读:7
作者:Tianci Liu, Yizhao Wang, Man Zhao, Jun Jiang, Tao Li, Man Zhang

Background

As a metabolic disease, any abnormality in the aerobic oxidation pathway of glucose may lead to the occurrence of diabetes. This study aimed to investigate the changes in proteins related to aerobic oxidative metabolism in urinary exosomes of diabetic patients and normal controls of different ages, and to further verify their correlation with the pathogenesis of diabetes.

Conclusions

In diabetic patients, aerobic oxidative metabolism is reduced, and the expression of aerobic oxidative metabolism-related proteins PFKM, GAPDH, ACO2, and MDH2 in urinary exosomes is reduced, which may become potential biomarkers for monitoring changes in diabetes.

Methods

Samples were collected, and proteomic information of urinary exosomes was collected by LC-MS/MS. ELISA was used to further detect the expression of aerobic and oxidative metabolism-related proteins in urinary exosomes of diabetic patients and normal controls of different ages, and to draw receiver operating characteristic (ROC) curve to evaluate its value in diabetes monitoring.

Results

A total of 17 proteins involved in aerobic oxidative metabolism of glucose were identified in urinary exosome proteins. Compared with normal control, the expressions of PFKM, GAPDH, ACO2 and MDH2 in diabetic patients were decreased, and the expression of IDH3G was increased. The concentrations of PFKM, GAPDH and ACO2 in urinary exosomes were linearly correlated with the expression of MDH2 (P<0.05). These four proteins vary with age, with the maximum concentration in the 45-59 age group. PFKM, GAPDH, ACO2, and MDH2 in urinary exosomes have certain monitoring value. When used in combination, the AUC was 0.840 (95% CI 0.764-0.915). Conclusions: In diabetic patients, aerobic oxidative metabolism is reduced, and the expression of aerobic oxidative metabolism-related proteins PFKM, GAPDH, ACO2, and MDH2 in urinary exosomes is reduced, which may become potential biomarkers for monitoring changes in diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。