The dual roles of RPE65 S-palmitoylation in membrane association and visual cycle function

RPE65 S-棕榈酰化在膜结合和视觉循环功能中的双重作用

阅读:5
作者:Sheetal Uppal, Tingting Liu, Eugenia Poliakov, Susan Gentleman, T Michael Redmond

Abstract

Association with the endoplasmic reticulum (ER) membrane is a critical requirement for the catalytic function of RPE65. Several studies have investigated the nature of the RPE65-membrane interaction; however, complete understanding of its mode of membrane binding is still lacking. Previous biochemical studies suggest the membrane interaction can be partly attributed to S-palmitoylation, but the existence of RPE65 palmitoylation remains a matter of debate. Here, we re-examined RPE65 palmitoylation, and its functional consequence in the visual cycle. We clearly demonstrate that RPE65 is post-translationally modified by a palmitoyl moiety, but this is not universal (about 25% of RPE65). By extensive mutational studies we mapped the S-palmitoylation sites to residues C112 and C146. Inhibition of palmitoylation using 2-bromopalmitate and 2-fluoropalmitate completely abolish its membrane association. Furthermore, palmitoylation-deficient C112 mutants are significantly impeded in membrane association. Finally, we show that RPE65 palmitoylation level is highly regulated by lecithin:retinol acyltransferase (LRAT) enzyme. In the presence of all-trans retinol, LRAT substrate, there is a significant decrease in the level of palmitoylation of RPE65. In conclusion, our findings suggest that RPE65 is indeed a dynamically-regulated palmitoylated protein and that palmitoylation is necessary for regulating its membrane binding, and to perform its normal visual cycle function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。