Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms

肝脏生物钟对摄食行为的整合揭示了代谢节律的网络依赖性

阅读:2
作者:Carolina M Greco ,Kevin B Koronowski ,Jacob G Smith ,Jiejun Shi ,Paolo Kunderfranco ,Roberta Carriero ,Siwei Chen ,Muntaha Samad ,Patrick-Simon Welz ,Valentina M Zinna ,Thomas Mortimer ,Sung Kook Chun ,Kohei Shimaji ,Tomoki Sato ,Paul Petrus ,Arun Kumar ,Mireia Vaca-Dempere ,Oleg Deryagin ,Cassandra Van ,José Manuel Monroy Kuhn ,Dominik Lutter ,Marcus M Seldin ,Selma Masri ,Wei Li ,Pierre Baldi ,Kenneth A Dyar ,Pura Muñoz-Cánoves ,Salvador Aznar Benitah ,Paolo Sassone-Corsi

Abstract

The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。