Retrieving Chromatin Patterns from Deep Sequencing Data Using Correlation Functions

使用相关函数从深度测序数据中检索染色质模式

阅读:5
作者:Jana Molitor, Jan-Philipp Mallm, Karsten Rippe, Fabian Erdel

Abstract

Epigenetic modifications and other chromatin features partition the genome on multiple length scales. They define chromatin domains with distinct biological functions that come in sizes ranging from single modified DNA bases to several megabases in the case of heterochromatic histone modifications. Due to chromatin folding, domains that are well separated along the linear nucleosome chain can form long-range interactions in three-dimensional space. It has now become a routine task to map epigenetic marks and chromatin structure by deep sequencing methods. However, assessing and comparing the properties of chromatin domains and their positional relationships across data sets without a priori assumptions remains challenging. Here, we introduce multiscale correlation evaluation (MCORE), which uses the fluctuation spectrum of mapped sequencing reads to quantify and compare chromatin patterns over a broad range of length scales in a model-independent manner. We applied MCORE to map the chromatin landscape in mouse embryonic stem cells and differentiated neural cells. We integrated sequencing data from chromatin immunoprecipitation, RNA expression, DNA methylation, and chromosome conformation capture experiments into network models that reflect the positional relationships among these features on different genomic scales. Furthermore, we used MCORE to compare our experimental data to models for heterochromatin reorganization during differentiation. The application of correlation functions to deep sequencing data complements current evaluation schemes and will support the development of quantitative descriptions of chromatin networks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。