Acrylamide induces intrinsic apoptosis and inhibits protective autophagy via the ROS mediated mitochondrial dysfunction pathway in U87-MG cells

丙烯酰胺通过 ROS 介导的 U87-MG 细胞线粒体功能障碍途径诱导内在细胞凋亡并抑制保护性自噬

阅读:10
作者:Linlin Deng, Mengyao Zhao, Yanan Cui, Quanming Xia, Lihua Jiang, Hao Yin, Liming Zhao

Abstract

Acrylamide (ACR) is a potential neurotoxin commonly found in the environment, as well as in food repeatedly exposed heat processing, but the mechanism underpinning ACR-induced neurotoxicity remains unclear. This study investigated the potential association and underlying signal transduction of oxidative stress, apoptosis, and autophagy associated with ACR-triggered neurotoxicity. Therefore, U87-MG cells were treated with varying ACR concentrations, while the cell activity reduction depended on the specific dosage and time parameters. Biochemical analyses showed that ACR significantly increased the reactive oxygen species (ROS), malondialdehyde (MDA), and Ca2+ levels while decreasing the glutathione (GSH) levels and mitochondrial membrane potential (ΔΨm), finally leading to a higher cell apoptotic rate. Moreover, ACR induced U87-MG cell apoptosis and autophagy via ROS-triggered expression in the mitochondrial apoptosis pathway, NF-κB activation, and autophagosome accumulation. In addition, the autophagosome accumulation induced by ACR could probably be ascribed to blocked autophagic flux, inhibiting the autophagosomes from combining with lysosomes, while the inhibition of autophagy caused by ACR further promoted the initiation of apoptosis. In conclusion, the results indicated that the apoptotic and autophagic pathways responded to ACR-induced neurotoxicity. However, inhibited protective autophagy further promoted apoptotic progression. New insights may be derived from these cellular responses that can help develop diverse pathway strategies for assessing the risk posed by ACR.HIGHLIGHTSACR induced mitochondrial- and caspase-dependent apoptosis in U87-MG cells.ACR regulated the autophagic markers and blocked autophagic flux in U87-MG cells.ACR inhibited protective autophagy and promoted apoptotic initiation in U87-MG cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。