Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair

核磷酸肌醇 3-激酶β控制双链断裂 DNA 修复

阅读:14
作者:Amit Kumar, Oscar Fernandez-Capetillo, Ana C Carrera

Abstract

Class I phosphoinositide 3-kinases are enzymes that generate 3-poly-phosphoinositides at the cell membrane following transmembrane receptor stimulation. Expression of the phosphoinositide 3-kinase beta (PI3Kbeta) isoform, but not its activity, is essential for early embryonic development. Nonetheless, the specific function of PI3Kbeta in the cell remains elusive. Double-strand breaks (DSB) are among the most deleterious lesions for genomic integrity; their repair is required for development. We show that PI3Kbeta is necessary for DSB sensing, as PI3Kbeta regulates binding of the Nbs1 sensor protein to damaged DNA. Indeed, Nbs1 did not bind to DSB in PI3Kbeta-deficient cells, which showed a general defect in subsequent ATM and ATR activation, resulting in genomic instability. Inhibition of PI3Kbeta also retarded the DNA repair but the defect was less marked than that induced by PI3Kbeta deletion, supporting a kinase-independent function for PI3Kbeta in DNA repair. These results point at class I PI3Kbeta as a critical sensor of genomic integrity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。