Amyloidosis cutis dyschromica cases caused by GPNMB mutations with different inheritance patterns

不同遗传模式的 GPNMB 突变导致的皮肤变色性淀粉样变性病例

阅读:6
作者:Wen Qin, Huijun Wang, Weilong Zhong, Juan Bai, Jianjun Qiao, Zhimiao Lin

Background

Amyloidosis cutis dyschromica (ACD) is a rare form of primary cutaneous amyloidosis featured by reticulate dotted hypo- and hyperpigmentation. Recently, loss-of-function mutations in GPNMB, encoding glycoprotein (transmembrane) nonmetastatic melanoma protein B, were found in autosomal-recessive or semi-dominant ACD.

Conclusions

Our findings proved that the recurrent mutation c.565C > T originated from a founder effect. The autosomal-dominant ACD associated mutation p.C413S played its pathogenic role through a dominant-negative effect on wild-type GPNMB. This study expands the genotype and inherited modes of ACD and improves our understanding of the pathogenesis of this disorder.

Methods

Nine ACD cases were collected including eight with autosomal-recessive pattern and one with autosomal-dominant pattern. Whole-exome sequencing or Sanger sequencing of the GPNMB gene was performed to detect the pathogenic mutations. Haplotype analysis was employed to determine the origin of mutation c.565C > T using adjacent highly polymorphic SNPs. Immunoblotting and subcellular localization assessments were performed to evaluate the expression of the mutants using HEK293 cells transfected with the GPNMB constructs.

Objective

This study aims to detect the genetic defect underlying ACD in nine separate cases and to investigate the functional consequences of the mutants.

Results

We detected four recurrent mutations (c.393 T > G, p.Y131*; c.565C > T, p.R189*; c.1056delT, p.P353Lfs*20; c.1238 G > C, p.C413S) and two novel mutations (c.935delA, p.N312Tfs*4; c.969 T > A, p.C323*) in GPNMB. Mutation c.565C > T found in six separate ACD cases shared a common haplotype. The two novel mutations caused a decreased abundance of truncated proteins. The c.1238 G > C mutation, which was detected in the autosomal-dominant case, caused abnormal reticular subcellular localization of the protein. A major percentage of wildtype changed its expression pattern when co-expressed with this mutant. Conclusions: Our findings proved that the recurrent mutation c.565C > T originated from a founder effect. The autosomal-dominant ACD associated mutation p.C413S played its pathogenic role through a dominant-negative effect on wild-type GPNMB. This study expands the genotype and inherited modes of ACD and improves our understanding of the pathogenesis of this disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。