Radiation promotes malignant phenotypes through SRC in breast cancer cells

辐射通过乳腺癌细胞中的 SRC 促进恶性表型

阅读:5
作者:Rae-Kwon Kim, Yan-Hong Cui, Ki-Chun Yoo, In-Gyu Kim, Minyoung Lee, Yung Hyun Choi, Yongjoon Suh, Su-Jae Lee

Abstract

Despite the fact that ionizing radiation (IR) is widely used as a standard treatment for breast cancer, much evidence suggests that IR paradoxically promotes cancer malignancy. However, the molecular mechanisms underlying radiation-induced cancer progression remain obscure. Here, we report that irradiation activates SRC signaling among SRC family kinase proteins, thereby promoting malignant phenotypes such as invasiveness, expansion of the cancer stem-like cell population, and resistance to anticancer agents in breast cancer cells. Importantly, radiation-activated SRC induced SLUG expression and caused epithelial-mesenchymal cell transition through phosphatidylinositol 3-kinase/protein kinase B and p38 MAPK signaling. In agreement, either inhibition of SRC or downstream signaling of p38 MAPK or protein kinase B effectively attenuated radiation-induced epithelial-mesenchymal cell transition along with an increase in the cancer stem-like cell population. In addition, downregulation of SRC also abolished radiation-acquired resistance of breast cancer cells to anticancer agents such as cisplatin, etoposide, paclitaxel, and IR. Taken together, our findings suggest that combining radiotherapy with targeting of SRC might attenuate the harmful effects of radiation and enhance the efficacy of breast cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。