Tubulator: an automated approach to analysis of t-tubule and dyadic organization in cardiomyocytes

Tubulator:一种分析心肌细胞中 T 小管和二元组织的自动化方法

阅读:7
作者:Michael Frisk, Per Andreas Norseng, Emil Knut Stenersen Espe, William E Louch

Abstract

During cardiac disease, t-tubules and dyads are remodelled and disrupted within cardiomyocytes, thereby reducing cardiac performance. Given the pathological implications of such dyadic remodelling, robust and versatile tools for characterizing these sub-cellular structures are needed. While analysis programs for continuous and regular structures such as rodent ventricular t-tubules are available, at least in two dimensions, these approaches are less appropriate for assessment of more irregular structures, such as dyadic proteins and non-rodent t-tubules. Here, we demonstrate versatile, easy-to-use software that performs such analyses. This software, called Tubulator, enables automated analysis of t-tubules and dyadic proteins alike, in both tissue sections and isolated myocytes. The program measures densities of subcellular structures and proteins in individual cells, quantifies their distribution into transversely and longitudinally oriented elements, and supports detailed co-localization analyses. Importantly, Tubulator provides tools for three-dimensional assessment and rendering of image stacks, extending examinations from the single plane to the whole-myocyte level. To provide insight into the consequences of dyadic organization for synchrony of Ca2+ handling, Tubulator also creates 'distance maps', by calculating the distance from all cytosolic positions to the nearest t-tubule and/or dyad. In conclusion, this freely accessible program provides detailed automated analysis of the three-dimensional nature of dyadic and t-tubular structures. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。