Restoration of gamma-sarcoglycan localization and mechanical signal transduction are independent in murine skeletal muscle

小鼠骨骼肌中 γ-肌聚糖定位的恢复与机械信号转导是独立的

阅读:4
作者:Elisabeth R Barton

Abstract

Limb girdle muscular dystrophy 2C is caused by mutations in the gamma-sarcoglycan gene (gsg) that results in loss of this protein, and disruption of the sarcoglycan (SG) complex. Signal transduction after mechanical perturbation is mediated, in part, through the SG complex and leads to phosphorylation of tyrosines on the intracellular portions of the sarcoglycans. This study tested if the Tyr(6) in the intracellular region of gamma-sarcoglycan protein (gamma-SG) was necessary for proper localization of the protein in skeletal muscle membranes or for the normal pattern of ERK1/2 phosphorylation after eccentric contractions. Viral mediated gene transfer of wild type gsg (WTgsg) and mutant gsg lacking Tyr(6) (Y6Agsg) was performed into the muscles of gsg(-/-) mice. Muscles were examined for production and stability of the gamma-SG, as well as the level of ERK1/2 phosphorylation before and after eccentric contraction. Sarcolemmal localization of gamma-SG was achieved regardless of which construct was expressed. However, only expression of WTgsg corrected the aberrant ERK1/2 phosphorylation associated with the absence of gamma-SG, whereas Y6Agsg failed to have any effect. This study shows that localization of gamma-SG does not require Tyr(6), but localization alone is insufficient for restoration of normal signal transduction patterns after mechanical perturbation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。