Stimulation of noradrenergic transmission by reboxetine is beneficial for a mouse model of progressive parkinsonism

瑞波西汀刺激去甲肾上腺素能传递对进展性帕金森病小鼠模型有益

阅读:6
作者:Grzegorz Kreiner, Katarzyna Rafa-Zabłocka, Justyna Barut, Piotr Chmielarz, Marta Kot, Monika Bagińska, Rosanna Parlato, Władysława Anna Daniel, Irena Nalepa

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by motor deficits such as tremor, rigidity and bradykinesia. These symptoms are directly caused by the loss of dopaminergic neurons. However, a wealth of clinical evidence indicates that the dopaminergic system is not the only system affected in PD. Postmortem studies of brains from PD patients have revealed the degeneration of noradrenergic neurons in the locus coeruleus (LC) to the same or even greater extent than that observed in the dopaminergic neurons of substantia nigra (SN) and ventral tegmental area (VTA). Moreover, studies performed on rodent models suggest that enhancement of noradrenergic transmission may attenuate the PD-like phenotype induced by MPTP administration, a neurotoxin-based PD model. The aim of this study was to investigate whether chronic treatment with either of two compounds targeting the noradrenergic system (reboxetine or atipamezole) possess the ability to reduce the progression of a PD-like phenotype in a novel mouse model of progressive dopaminergic neurodegeneration induced by the genetic inhibition of rRNA synthesis in dopaminergic neurons, mimicking a PD-like phenotype. The results showed that reboxetine improved the parkinsonian phenotype associated with delayed progression of SN/VTA dopaminergic neurodegeneration and higher dopamine content in the striatum. Moreover, the alpha1-adrenergic agonist phenylephrine enhanced survival of TH+ neurons in primary cell cultures, supporting the putative neuroprotective effects of noradrenergic stimulation. Our results provide new insights regarding the possible influence of the noradrenergic system on dopaminergic neuron survival and strongly support the hypothesis regarding the neuroprotective role of noradrenaline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。