Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome

异常早期 ERK 失活阻碍脆性 X 综合征中的神经元功能

阅读:8
作者:Soong Ho Kim, Julie A Markham, Ivan Jeanne Weiler, William T Greenough

Abstract

Fragile X syndrome (FXS) has so far resisted efforts to define the basic cellular defects caused by the absence of a single protein, fragile X mental retardation protein (FMRP), because the patients have a wide variety of symptoms of varying severity. Immature-appearing dendritic spines on neurons found in FXS patients and fmr1-KO mice suggest a role for FMRP in modulating production of synaptic structural proteins. We isolated cortical synaptoneurosomes from WT and KO mice and studied MAPK pathway activation after group I metabotropic glutamate receptor (mGluR) stimulation. Here, we show that ERK in KO synaptoneurosomes is rapidly dephosphorylated upon mGluR1/5 stimulation, whereas it is phosphorylated in WT mice, suggesting that aberrant activation of phosphatases occurs in KO synapses in response to synaptic stimulation. In KO synapses, protein phosphatase 2A (PP2A) is overactivated after mGluR1 stimulation, and tyrosine phosphatase is overactivated after mGluR5 stimulation, causing the rapid deactivation of ERK. ERK activation can be restored in KO by pretreatment with phosphatase blockers; blocking of PP2A by okadaic acid could successfully restore normal ERK activation in KO synaptoneurosomes. We propose that overactivation of phosphatases in synapses may be a key deficit in FXS, which affects synaptic translation, transcription, and synaptic receptor regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。