Comparison of True and Smoothed Puff Profile Replication on Smoking Behavior and Mainstream Smoke Emissions

真实和平滑烟雾轮廓复制对吸烟行为和主流烟雾排放的影响比较

阅读:11
作者:Marielle C Brinkman, Hyoshin Kim, Jane C Chuang, Robyn R Kroeger, Dawn Deojay, Pamela I Clark, Sydney M Gordon

Abstract

To estimate exposures to smokers from cigarettes, smoking topography is typically measured and programmed into a smoking machine to mimic human smoking, and the resulting smoke emissions are tested for relative levels of harmful constituents. However, using only the summary puff data--with a fixed puff frequency, volume, and duration--may underestimate or overestimate actual exposure to smoke toxins. In this laboratory study, we used a topography-driven smoking machine that faithfully reproduces a human smoking session and individual human topography data (n = 24) collected during previous clinical research to investigate if replicating the true puff profile (TP) versus the mathematically derived smoothed puff profile (SM) resulted in differences in particle size distributions and selected toxic/carcinogenic organic compounds from mainstream smoke emissions. Particle size distributions were measured using an electrical low pressure impactor, the masses of the size-fractionated fine and ultrafine particles were determined gravimetrically, and the collected particulate was analyzed for selected particle-bound, semivolatile compounds. Volatile compounds were measured in real time using a proton transfer reaction-mass spectrometer. By and large, TP levels for the fine and ultrafine particulate masses as well as particle-bound organic compounds were slightly lower than the SM concentrations. The volatile compounds, by contrast, showed no clear trend. Differences in emissions due to the use of the TP and SM profiles are generally not large enough to warrant abandoning the procedures used to generate the simpler smoothed profile in favor of the true profile.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。