Genetic diversity and phylogenetic relationships of tsetse flies of the palpalis group in Congo Brazzaville based on mitochondrial cox1 gene sequences

基于线粒体 cox1 基因序列的刚果布拉柴维尔须蝇组采采蝇的遗传多样性和系统发育关系

阅读:5
作者:Abraham Mayoke, Shadrack M Muya, Rosemary Bateta, Paul O Mireji, Sylvance O Okoth, Samuel G Onyoyo, Joanna E Auma, Johnson O Ouma

Background

Despite the morphological characterization established in the 1950s and 1960s, the identity of extant taxa that make up Glossina fuscipes (s.l.) in the Congo remains questionable. Previous claims of overlap between G. fuscipes (believed to be G. f. quanzensis) and G. palpalis palpalis around Brazzaville city further complicate the taxonomic status and population dynamics of the two taxa. This study aimed to determine the phylogenetic relationships between G. fuscipes (s.l.) and G. p. palpalis and to assess genetic variation among G. fuscipes (s.l.) populations in Congo Brazzaville.

Conclusions

Phylogenetic analysis revealed minor differences between G. fuscipes (s.l.) and G. p. palpalis. Genetic diversity of G. fuscipes (s.l.) was high in the populations sampled except one. Genetic differentiation ranged from moderate to high among subpopulations. There was a restricted gene flow between G. fuscipes (s.l.) populations in the north and central part of the country. Genetic signatures based on cox1 showed recent expansion and recovery of G. fuscipes (s.l.) populations from previous bottlenecks. To fully understand the species distribution limits, we recommend further studies involving a wider sampling scheme including the swampy Mossaka focus for G. fuscipes (s.l.) and the entire range of G. p. palpalis in South Congo.

Methods

We collected 263 G. fuscipes (s.l.) from northern and central regions, and 65 G. p. palpalis from southern part of the country. The mitochondrial cytochrome c oxidase subunit 1 (cox1) gene was amplified using taxa-specific primer pairs. Sequence data were analyzed in DnaSP and Arlequin to assess the genetic diversity, differentiation and demographic history of G. fuscipes (s.l.) populations.

Results

The general BLAST analysis yielded a similarity of 99% for G. fuscipes (s.l.) and G. p. palpalis. BLASTn analysis for G. fuscipes (s.l.) showed > 98% identity with GenBank sequences for G. fuscipes (s.l.), with BEMB population showing 100% similarity with G. f. fuscipes. Glossina fuscipes (s.l.) populations showed high haplotype diversity (H = 46, Hd = 0.884), moderate nucleotide diversity ( = 0.012) and moderate (FST = 0.072) to high (FST = 0.152) genetic differentiation. Most of the genetic variation (89.73%) was maintained within populations. The mismatch analysis and neutrality tests indicated recent tsetse population expansions. Conclusions: Phylogenetic analysis revealed minor differences between G. fuscipes (s.l.) and G. p. palpalis. Genetic diversity of G. fuscipes (s.l.) was high in the populations sampled except one. Genetic differentiation ranged from moderate to high among subpopulations. There was a restricted gene flow between G. fuscipes (s.l.) populations in the north and central part of the country. Genetic signatures based on cox1 showed recent expansion and recovery of G. fuscipes (s.l.) populations from previous bottlenecks. To fully understand the species distribution limits, we recommend further studies involving a wider sampling scheme including the swampy Mossaka focus for G. fuscipes (s.l.) and the entire range of G. p. palpalis in South Congo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。