Reactive oxygen species, glutathione, and thioredoxin influence suberoyl bishydroxamic acid-induced apoptosis in A549 lung cancer cells

活性氧、谷胱甘肽和硫氧还蛋白影响辛二酰双羟肟酸诱导的A549肺癌细胞凋亡

阅读:4
作者:Bo Ra You, Suhn Hee Kim, Woo Hyun Park

Abstract

Suberoyl bishydroxamic acid (SBHA) as a histone deacetylase (HDAC) inhibitor can induce apoptosis through the formation of reactive oxygen species (ROS). However, there is no report about the regulation of ROS and antioxidant enzymes in SBHA-treated lung cancer cells. Here, we investigated the toxicological effects of SBHA on the regulations of ROS, glutathione (GSH), and antioxidant enzymes, especially thioredoxin (Trx) in A549 lung cancer cells. SBHA inhibited the growth of A549 cells in time- and dose-dependent manners, and it induced apoptosis which accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). SBHA significantly increased ROS levels including O2 (•-) level at 72 h whereas it decreased ROS levels at the early time points (30 min to 3 h). SBHA also induced GSH depletion at 24 and 72 h. N-acetyl cysteine (NAC; a well-known antioxidant) prevented apoptotic cell death and GSH depletion via decreasing ROS in SBHA-treated A549 cells. In addition, SBHA changed the levels of antioxidant-related proteins, especially Trx1. The expression and activity of Trx1 in A549 cells were reduced by SBHA. While the downregulation of Trx1 enhanced cell death, ROS level, and GSH depletion in SBHA-treated A549 cells, the overexpression of Trx1 decreased ROS level in these cells without the prevention of cell death and GSH depletion. In conclusion, SBHA-induced A549 cell death was influenced by changes in ROS and GSH levels. The basal status of Trx1 among other antioxidant proteins was closely correlated with the survival of A549 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。