Genome-wide analysis of DNA methylation in hypothalamus and ovary of Capra hircus

山羊下丘脑和卵巢DNA甲基化的全基因组分析

阅读:4
作者:Stefano Frattini, Emanuele Capra, Barbara Lazzari, Stephanie D McKay, Beatrice Coizet, Andrea Talenti, Debora Groppetti, Pietro Riccaboni, Alessandro Pecile, Stefania Chessa, Bianca Castiglioni, John L Williams, Giulio Pagnacco, Alessandra Stella, Paola Crepaldi

Background

DNA methylation is a frequently studied epigenetic modification due to its role in regulating gene expression and hence in biological processes and in determining phenotypic plasticity in organisms. Rudimentary DNA methylation patterns for some livestock species are publically available: among these, goat methylome deserves to be further explored.

Conclusions

The comparison between transcriptome and methylome in hypothalamus and ovary showed that a higher level of methylation is not accompanied by a higher gene suppression. The genome-wide DNA methylation map for two goat organs produced here is a valuable starting point for studying the involvement of epigenetic modifications in regulating goat reproduction performance.

Results

Genome-wide DNA methylation maps of the hypothalamus and ovary from Saanen goats were generated using Methyl-CpG binding domain protein sequencing (MBD-seq). Analysis of DNA methylation patterns indicate that the majority of methylation peaks found within genes are located gene body regions, for both organs. Analysis of the distribution of methylated sites per chromosome showed that chromosome X had the lowest number of methylation peaks. The X chromosome has one of the highest percentages of methylated CpG islands in both organs, and approximately 50% of the CpG islands in the goat epigenome are methylated in hypothalamus and ovary. Organ-specific Differentially Methylated Genes (DMGs) were correlated with the expression levels. Conclusions: The comparison between transcriptome and methylome in hypothalamus and ovary showed that a higher level of methylation is not accompanied by a higher gene suppression. The genome-wide DNA methylation map for two goat organs produced here is a valuable starting point for studying the involvement of epigenetic modifications in regulating goat reproduction performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。