Paving the Way towards Sustainability of Polyurethanes: Synthesis and Properties of Terpene-Based Diisocyanate

为聚氨酯的可持续性铺平道路:萜烯基二异氰酸酯的合成与性能

阅读:8
作者:Aliénor Delavarde, Sebastien Lemouzy, Aurélien Lebrun, Julien Pinaud, Sylvain Caillol

Abstract

Due to growing concerns about environmental issues and the decline of petroleum-based resources, the synthesis of new biobased compounds for the polymer industry has become a prominent and timely topic. P-menthane-1,8-diamine (PMDA) is a readily available compound synthesized from turpentine, a cheap mixture of natural compounds isolated from pine trees. PMDA has been extensively used for its biological activities, but it can also serve as a source of valuable monomers for the polymer industry. In this work, commercial PMDA (ca. 85% pure) was purified by salinization, crystallization, and alkali treatment and then converted into p-menthane-1,8-diisocyanate (PMDI) through a phosgene-free synthesis at room temperature. A thorough analytical study using NMR techniques (1H, 13C, 13C-1H HSQC, 13C-1H HMBC, and 1H-1H NOESY) enables the characterization of the cis-trans isomeric mixtures of both PMDA and PMDI. These structural studies allowed for a better understanding of the spatial configuration of both isomers. Then, the reactivity of PMDI with a primary alcohol (benzyl alcohol) was studied in the presence of nine different catalysts exhibiting different activation modes. Finally, the use of PMDI in the synthesis of polyurethanes was explored to demonstrate that PMDI can be employed as a new biobased alternative to petrochemical-based isocyanates such as isophorone diisocyanate (IPDI).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。