Keap1-Nrf2 activation in the presence and absence of DJ-1

在存在和不存在 DJ-1 的情况下 Keap1-Nrf2 的激活

阅读:7
作者:Li Gan, Delinda A Johnson, Jeffrey A Johnson

Abstract

The molecular mechanisms leading to neurodegeneration in Parkinson's disease remain elusive. Deletion and mutations of DJ-1 (PARK7) have been reported to cause autosomal recessive familial Parkinson's disease. Wildtype DJ-1 scavenges H(2)O(2) by cysteine oxidation in response to oxidative stress, and thus confers neuroprotection. Activation of the transcription factor NF-E2-related factor-2 (Nrf2) has also been shown to be important for protection against oxidative stress in many models of neurodegenerative diseases. Previous data indicate that DJ-1 affects the transcriptional functions and stability of Nrf2. However, this observation has not been confirmed. In the current study, the role of DJ-1 in the regulation of Nrf2 is examined in primary cultured neurons, astrocytes and in vivo. The prototypical Nrf2 activator tBHQ protected primary cortical neurons derived from DJ-1-knockout (KO) as well as DJ-1 wildtype mice by activation of Nrf2-ARE pathway. Nrf2 nuclear translocation, robust increases in canonical Nrf2-driven genes and proteins, and dramatic activation of the ARE reporter gene, hPAP, were observed after tBHQ treatment. These results were further confirmed by siRNA-mediated DJ-1 knockdown in primary cortical astrocytes from ARE-hPAP mice and tBHQ administration into the striatum of mouse brain. In addition, overexpression of Nrf2 with adenovirus preferentially in astrocytes from DJ-1-KO mice enhanced survival of neurons under oxidative insults. These findings indicate that activation of the Nrf2-ARE pathway is independent of DJ-1, and Nrf2 activation is a potential therapeutic target to prevent neurodegeneration in sporadic and DJ-1 familial Parkinson's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。