Dupuytren's Disease Is Mediated by Insufficient TGF-β1 Release and Degradation

杜普伊特伦挛缩症是由 TGF-β1 释放和降解不足引起的

阅读:6
作者:Lisa Oezel, Marie Wohltmann, Nele Gondorf, Julia Wille, Irmak Güven, Joachim Windolf, Simon Thelen, Carina Jaekel, Vera Grotheer

Abstract

Dupuytren's disease (DD) is a fibroproliferative disorder affecting the palmar fascia, causing functional restrictions of the hand and thereby limiting patients' daily lives. The disturbed and excessive myofibroblastogenesis, causing DD, is mainly induced by transforming growth factor (TGF)-β1. But, the extent to which impaired TGF-β1 release or TGF-β signal degradation is involved in pathologically altered myofibroblastogenesis in DD has been barely examined. Therefore, the complex in which TGF-β1 is secreted in the extracellular matrix to elicit its biological activity, and proteins such as plasmin, integrins, and matrix metalloproteinases (MMPs), which are involved in the TGF-β1 activation, were herein analyzed in DD-fibroblasts (DD-FBs). Additionally, TGF-β signal degradation via caveolin-1 was examined with 5-fluoruracil (5-FU) in detail. Gene expression analysis was performed via Western blot, PCR, and immunofluorescence analyses. As a surrogate parameter for disturbed myofibroblastogenesis, 𝛼-smooth-muscle-actin (𝛼-SMA) expression was evaluated. It was demonstrated that latency-associated peptide (LAP)-TGF-β and latent TGF-β-binding protein (LTBP)-1 involved in TGF-β-complex building were significantly upregulated in DD. Plasmin a serinprotease responsible for the TGF-β release was significantly downregulated. The application of exogenous plasmin was able to inhibit disturbed myofibroblastogenesis, as measured via 𝛼-SMA expression. Furthermore, a reduced TGF-β1 degradation was also involved in the pathological phenotype of DD, because caveolin-1 expression was significantly downregulated, and if rescued, myofibroblastogenesis was also inhibited. Therefore, our study demonstrates that a deficient release and degradation of TGF-β1 are important players in the pathological phenotype of DD and should be addressed in future research studies to improve DD therapy or other related fibrotic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。