Protein-Polymer Conjugates Synthesized Using Water-Soluble Azlactone-Functionalized Polymers Enable Receptor-Specific Cellular Uptake toward Targeted Drug Delivery

利用水溶性氮杂内酯功能化聚合物合成的蛋白质-聚合物缀合物可实现受体特异性细胞摄取,从而实现靶向药物递送

阅读:1
作者:Julia S Kim, Allison R Sirois ,Analia J Vazquez Cegla, Eugenie Jumai'an, Naomi Murata, Maren E Buck, Sarah J Moore

Abstract

Conjugation of proteins to drug-loaded polymeric structures is an attractive strategy for facilitating target-specific drug delivery for a variety of clinical needs. Polymers currently available for conjugation to proteins generally have limited chemical versatility for subsequent drug loading. Many polymers that do have chemical functionality useful for drug loading are often insoluble in water, making it difficult to synthesize functional protein-polymer conjugates for targeted drug delivery. In this work, we demonstrate that reactive, azlactone-functionalized polymers can be grafted to proteins, conjugated to a small-molecule fluorophore, and subsequently internalized into cells in a receptor-specific manner. Poly(2-vinyl-4,4-dimethylazlactone), synthesized using reversible addition-fragmentation chain transfer polymerization, was modified post-polymerization with substoichiometric equivalents of triethylene glycol monomethyl ether to yield reactive water-soluble, azlactone-functionalized copolymers. These reactive polymers were then conjugated to proteins holo-transferrin and ovotransferrin. Protein gel analysis verified successful conjugation of proteins to polymer, and protein-polymer conjugates were subsequently purified from unreacted proteins and polymers using size exclusion chromatography. Internalization experiments using a breast cancer cell line that overexpresses the transferrin receptor on its surface showed that the holo-transferrin-polymer conjugate was successfully internalized by cells in a mechanism consistent with receptor-mediated endocytosis. Internalization of protein-polymer conjugate demonstrated that the protein ligand maintained its overall structure and function following conjugation to polymer. Our approach to protein-polymer conjugate synthesis offers a simple, tailorable strategy for preparing bioconjugates of interest for a broad range of biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。