Triphenyltin recognition by primary structures of effector proteins and the protein network of Bacillus thuringiensis during the triphenyltin degradation process

三苯基锡降解过程中效应蛋白的一级结构和苏云金芽孢杆菌的蛋白质网络对三苯基锡的识别

阅读:6
作者:Linlin Wang, Jinshao Ye, Huase Ou, Huaming Qin, Yan Long, Jing Ke

Abstract

Herein, triphenyltin (TPT) biodegradation efficiency and its transformation pathway have been elucidated. To better understand the molecular mechanism of TPT degradation, the interactions between amino acids, primary structures, and quaternary conformations of effector proteins and TPT were studied. The results verified that TPT recognition and binding depended on amino acid sequences but not on secondary, tertiary or quaternary protein structure. During this process, TPT could change the molecular weight and isoelectric point of effector proteins, induce their methylation or demethylation, and alter their conformation. The effector proteins, alkyl hydroperoxide reductase and acetyl-CoA acetyltransferase, recognizing TPT were crucial to TPT degradation. Electron transfer flavoprotein subunit alpha, phosphoenolpyruvate carboxykinase, aconitate hydratase, branched-chain alpha-keto acid dehydrogenase E1 component, biotin carboxylase and superoxide dismutase were related to energy and carbon metabolism, which was consistent with the results in vivo. The current findings develop a new approach for investigating the interactions between proteins and target compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。