Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting

具有自组装囊泡的工程间充质干细胞用于全身细胞靶向

阅读:5
作者:Debanjan Sarkar, Praveen K Vemula, Weian Zhao, Ashish Gupta, Rohit Karnik, Jeffrey M Karp

Abstract

Cell therapy has the potential to impact the quality of life of suffering patients. Systemic infusion is a convenient method of cell delivery; however, the efficiency of engraftment presents a major challenge. It has been shown that modification of the cell surface with adhesion ligands is a viable approach to improve cell homing, yet current methods including genetic modification suffer potential safety concerns, are practically complex and are unable to accommodate a wide variety of homing ligands or are not amendable to multiple cell types. We report herein a facile and generic approach to transiently engineer the cell surface using lipid vesicles to present biomolecular ligands that promote cell rolling, one of the first steps in the homing process. Specifically, we demonstrated that lipid vesicles rapidly fuse with the cell membrane to introduce biotin moieties on the cell surface that can subsequently conjugate streptavidin and potentially any biotinylated homing ligand. Given that cell rolling is a pre-requisite to firm adhesion for systemic cell homing, we examined the potential of immobilizing sialyl Lewis X (SLeX) on mesenchymal stem cells (MSCs) to induce cell rolling on a P-selectin surface, under dynamic flow conditions. MSCs modified with SLeX exhibit significantly improved rolling interactions with a velocity of 8 microm/s as compared to 61 microm/s for unmodified MSCs at a shear stress of 0.5 dyn/cm(2). The cell surface modification does not impact the phenotype of the MSCs including their viability and multi-lineage differentiation potential. These results show that the transitory modification of cell surfaces with lipid vesicles can be used to efficiently immobilize adhesion ligands and potentially target systemically administered cells to the site of inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。