Reduced expression of odd-skipped related transcription factor 1 promotes proliferation and invasion of breast cancer cells and indicates poor patient prognosis

奇数跳跃相关转录因子 1 表达降低促进乳腺癌细胞增殖和侵袭并预示患者预后不良

阅读:8
作者:Yuan Wang, Lei Lei, Fang Xu, Hong-Tao Xu

Abstract

Odd-skipped related transcription factor 1 (OSR1) serves an important role in the development of the intermediate mesoderm; however, its expression in cancer remains unknown. The present study aimed to explore the expression and role of OSR1 in breast cancer development. Immunohistochemistry was performed to detect OSR1 expression in breast cancer tissue and western blot analysis was used to evaluate the expression of OSR1 and related proteins, including β-catenin, c-Myc and cyclin D1. OSR1 expression was increased following transfection of MCF7 cells with OSR1 overexpression vector (MCF7-OSR1) and reduced by transfecting MDA-MB-231 cells with small interfering (si)RNA targeting OSR1 (MDA-MB-231-siOSR1). Cell proliferation and Matrigel™ invasion assays were used to investigate the effects of OSR1 on the proliferation and invasion of breast cancer cells. OSR1 was downregulated in breast cancer tissue compared with that in normal breast tissue and associated with lymph node metastases and estrogen receptor (ER) expression. Furthermore, reduced expression of OSR1 was associated with poor patient prognosis. Overexpression of OSR1 inhibited the proliferation and invasion of breast cancer cells. Western blot analysis of MCF7-OSR1 cells demonstrated that compared with that in the control cells, the expression of E-cadherin was increased, whereas that of key epithelial-mesenchymal transition (EMT) proteins, N-cadherin and Snail, was decreased. In addition, overexpression of OSR1 significantly decreased the expression level of β-catenin and Wnt target genes, such as c-Myc and cyclin D1, compared with that in the control cells. These expression patterns were reversed in the MDA-MB-231-siOSR1 cells. The results of the present study suggested that OSR1 downregulates the activity of the Wnt signaling pathway and EMT, which inhibits the proliferative and invasive abilities of breast cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。