Differential modulation of N-type calcium channels by micro-opioid receptors in oxytocinergic versus vasopressinergic neurohypophysial terminals

微阿片受体在催产素和加压素神经垂体末端对 N 型钙通道的差异调节

阅读:4
作者:Sonia I Ortiz-Miranda, Govindan Dayanithi, Cristina Velázquez-Marrero, Edward E Custer, Steven N Treistman, José R Lemos

Abstract

Opioids modulate the electrical activity of magnocellular neurons (MCN) and inhibit neuropeptide release at their terminals in the neurohypophysis. We have previously shown that micro-opioid receptor (MOR) activation induces a stronger inhibition of oxytocin (OT) than vasopressin (AVP) release from isolated MCN terminals. This higher sensitivity of OT release is due, at least in part, to the selective targeting of R-type calcium channels. We now describe the underlying basis for AVP's weaker inhibition by MOR activation and provide a more complete explanation of the complicated effects on neuropeptide release. We found that N-type calcium channels in AVP terminals are differentially modulated by MOR; enhanced at lower concentrations but increasingly inhibited at higher concentrations of agonists. On the other hand, N-type calcium channels in OT terminals were always inhibited. The response pattern in co-labeled terminals was analogous to that observed in AVP-containing terminals. Changes in intracellular calcium concentration and neuropeptide release corroborated these results as they showed a similar pattern of enhancement and inhibition in AVP terminals contrasting with solely inhibitory responses in OT terminals to MOR agonists. We established that fast translocation of Ca(2+) channels to the plasma membrane was not mediating current increments and thus, changes in channel kinetic properties are most likely involved. Finally, we reveal a distinct Ca-channel beta-subunit expression between each type of nerve endings that could explain some of the differences in responses to MOR activation. These results help advance our understanding of the complex modulatory mechanisms utilized by MORs in regulating presynaptic neuropeptide release.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。