Unacylated ghrelin stimulates fatty acid oxidation to protect skeletal muscle against palmitate-induced impairment of insulin action in lean but not high-fat fed rats

未酰化的生长素释放肽刺激脂肪酸氧化,保护骨骼肌免受棕榈酸引起的瘦大鼠而非高脂大鼠的胰岛素作用损害

阅读:5
作者:Daniel T Cervone, Barbora Hucik, Andrew J Lovell, David J Dyck

Background

Ghrelin is a gut hormone that spikes in circulation before mealtime. Recent findings suggest that both ghrelin isoforms stimulate skeletal muscle fatty acid oxidation, lending to the possibility that it may regulate skeletal muscle's handling of meal-derived substrates. It was hypothesized in the current study that ghrelin may preserve muscle insulin response during conditions of elevated saturated fatty acid (palmitate) availability by promoting its oxidation.

Conclusions

UnAG is able to protect muscle from acute lipid exposure, likely due to its ability to stimulation fatty acid oxidation. This effect is lost in high-fat fed animals, implying a resistance to ghrelin at the level of the muscle. The underlying mechanisms accounting for ghrelin resistance in high fat-fed animals remain to be discovered.

Results

Soleus muscle strips were isolated from male rats to determine the direct effects of ghrelin isoforms on fatty acid oxidation, glucose uptake and insulin signaling. We demonstrate that unacylated ghrelin (UnAG) is the more potent stimulator of skeletal muscle fatty acid oxidation. Both isoforms of ghrelin generally protected muscle from impaired insulin-mediated phosphorylation of AKT Ser473 and Thr308, as well as downstream phosphorylation of AS160 Ser588 during high palmitate exposure. However, only UnAG was able to preserve insulin-stimulated glucose uptake during exposure to high palmitate concentrations. The use of etomoxir, an irreversible inhibitor of carnitine palmitoyltransferase (CPT-1) abolished this protection, strongly suggesting that UnAG's stimulation of fatty acid oxidation may be essential to this protection. To our knowledge, we are also the first to investigate the impact of a chronic high-fat diet on ghrelin's actions in muscle. Following 6 wks of a high-fat diet, UnAG was unable to preserve insulin-stimulated signaling or glucose transport during an acute high palmitate exposure. UnAG was also unable to further stimulate 5' AMP-activated protein kinase (AMPK) or fatty acid oxidation during high palmitate exposure. Corticotropin-releasing hormone receptor-2 (CRF-2R) content was significantly decreased in muscle from high-fat fed animals, which may partially account for the loss of UnAG's effects. Conclusions: UnAG is able to protect muscle from acute lipid exposure, likely due to its ability to stimulation fatty acid oxidation. This effect is lost in high-fat fed animals, implying a resistance to ghrelin at the level of the muscle. The underlying mechanisms accounting for ghrelin resistance in high fat-fed animals remain to be discovered.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。