Enhanced tumor uptake and activity of nanoplex-loaded doxorubicin

增强纳米复合物载阿霉素的肿瘤摄取和活性

阅读:8
作者:Na Zhao, Qixin Leng, Martin C Woodle, A James Mixson

Abstract

Doxorubicin (Dox) has widespread use as a cancer chemotherapeutic agent, but Dox is limited by several side effects including irreversible cardiomyopathy. Although liposomal Dox formulations, such as Doxil, mitigate side effects, they do not prolong survival in many patients. As a result, efforts have continued to discover improved formulations of Dox. We previously found that a peptide-based nanoplex delivered plasmid DNA efficiently to tumors in murine models. Unlike the majority of nanoparticles that depend solely on enhanced permeability and retention (EPR) for their transport into the tumor, our peptide-based nanoplex has a potential advantage in that its uptake primarily depends on neuropilin-1 receptor targeting. Because Dox binds to DNA, we tested whether this delivery platform could effectively deliver Dox to tumors and reduce their size. The nanoplexes increased the levels of Dox in tumors by about 5.5-fold compared to aqueous (free) Dox controls. Consistent with enhanced levels in the tumor, the nanoplex-Dox treatment had significantly greater anti-tumor activity. Whereas low dose free Dox did not reduce the size of tumors compared to untreated controls, the low dose nanoplex-Dox reduced the size of tumors by nearly 55% (p < 0.001). The high dose nanoplex-Dox also inhibited the size of tumor significantly more than the comparable high-dose free Dox (p < 0.001). Furthermore, apoptosis and proliferation markers (Ki67) of tumors observed in the different treatment groups correlated with their ability to inhibit tumor size. This study shows the efficacy of an NRP-1 targeted nanoplexes to deliver Dox to tumors in vivo and lays the groundwork for more complex and effective formulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。