Quercetin inhibits the amphiregulin/EGFR signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in obstructive nephropathy

槲皮素抑制阻塞性肾病中的双调蛋白/EGFR信号介导的肾小管上皮-间质转化和肾纤维化

阅读:9
作者:Qi Wang, Fuqiang Wang, Xiangze Li, Zhi Ma, Dapeng Jiang

Abstract

Quercetin is a widely distributed, bioactive flavonoid compound, which displays potential to inhibit fibrosis in several diseases. The purpose of our study was to determine the effect of quercetin treatment on renal fibrosis and investigate the mechanism. Human proximal tubular epithelial cells (HK-2) stimulated by transforming growth factor-β1 (TGF-β1) and a rat model of unilateral ureter obstruction (UUO) that contributes to fibrosis were used to investigate the role and molecular mechanism of quercetin. PD153035 (N-[3-Bromophenyl]-6,7-dimethoxyquinazolin-4-amine) was used to inactivate EGFR (epidermal growth factor receptor). The level of fibrosis, proliferation, apoptosis, and oxidative stress in HK-2 were measured. All data are presented as means ± standard deviation (SD). p-value < .05 was considered statistically significant. In UUO rats, quercetin reduced the area of fibrosis as well as inflammation, oxidative stress, and cell apoptosis. In cultured HK-2 cells, quercetin significantly ameliorated the EMT induced by TGF-β1, which was accompanied by increased amphiregulin (AREG) expression. Moreover, quercetin inhibited AREG binding to the EGFR receptor, thereby further affecting other downstream pathways. Quercetin may alleviate fibrosis in vitro and in vivo by inhibiting the activation of AREG/EGFR signaling indicating a potential therapeutic effect of quercetin in renal fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。