Blood flow restriction in human skeletal muscle during rest periods after high-load resistance training down-regulates miR-206 and induces Pax7

高负荷阻力训练后休息期间人体骨骼肌血流受限可下调 miR-206 并诱导 Pax7

阅读:8
作者:Ferenc Torma, Zoltan Gombos, Marcell Fridvalszki, Gergely Langmar, Zsofia Tarcza, Bela Merkely, Hisashi Naito, Noriko Ichinoseki-Sekine, Masaki Takeda, Zsolt Murlasits, Peter Osvath, Zsolt Radak

Conclusion

BFR, during the rest periods of high-load resistance training, could lead to mRNA elevation of those proteins that regulate angiogenesis, mitochondrial biogenesis, and muscle hypertrophy and repair. However, BFR also can cause DNA damage, judging from the increase in mRNA levels of lupus Ku autoantigen protein p70.

Methods

A total of 7 healthy young men performed squats, and between sets BFR was carried out on one leg while the other leg served as a control. Because BFR was applied during rest periods, even severe occlusion pressure (approximately 230 mmHg), which almost completely blocked blood flow, was well-tolerated by the participants. Five muscle-specific microRNAs were measured from the biopsy samples, which were taken 2 h after the acute training.

Results

Doppler data showed that the pattern of blood flow recovery changed significantly between the first and last BFR. microRNA-206 levels significantly decreased in the BFR leg compared to the control. The mRNA levels of RAC-β serine/threonine-protein kinase v22, nuclear respiratory factor 1, vascular endothelial growth factor, lupus Ku autoantigen protein p70 genes (p < 0.05), and paired box 7 (p < 0.01) increased in the BFR leg. The protein levels of paired box 7, nuclear respiratory factor 1, and peroxisome proliferator-activated receptor γ coactivator 1α did not differ between the BFR leg and the control leg.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。