Vascular regeneration in adult mouse cochlea stimulated by VEGF-A165 and driven by NG2-derived cells ex vivo

VEGF-A165 刺激成年小鼠耳蜗血管再生,并由 NG2 衍生细胞体外驱动

阅读:6
作者:Xiaohan Wang, Jinhui Zhang, Guangshuai Li, Na Sai, Jiang Han, Zhiqiang Hou, Allan Kachelmeier, Xiaorui Shi

Abstract

Can damaged or degenerated vessels be regenerated in the ear? The question is clinically important, as disruption of cochlear blood flow is seen in a wide variety of hearing disorders, including in loud sound-induced hearing loss (endothelial injury), ageing-related hearing loss (lost vascular density), and genetic hearing loss (e.g., Norrie disease: strial avascularization). Progression in cochlear blood flow (CBF) pathology can parallel progression in hair cell and hearing loss. However, neither new vessel growth in the ear, nor the role of angiogenesis in hearing, have been investigated. In this study, we used an established ex vivo tissue explant model in conjunction with a matrigel matrix model to demonstrate for the first time that new vessels can be generated by activating a vascular endothelial growth factor (VEGF-A) signal. Most intriguingly, we found that the pattern of the newly formed vessels resembles the natural 'mesh pattern' of in situ strial vessels, with both lumen and expression of tight junctions. Sphigosine-1-phosphate (S1P) in synergy with VEGF-A control new vessel size and growth. Using transgenic neural/glial antigen 2 (NG2) fluorescent reporter mice, we have furthermore discovered that the progenitors of "de novo" strial vessels are NG2-derived cells. Taken together, our data demonstrates that damaged strial microvessels can be regenerated by reprogramming NG2-derived angiogenic cells. Restoration of the functional vasculature may be critical for recovery of vascular dysfunction related hearing loss.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。