Synthesis and properties of oligodiaminogalactoses that bind to A-type oligonucleotide duplexes

与 A 型寡核苷酸双链结合的寡二氨基半乳糖的合成及特性

阅读:11
作者:Tomomi Shiraishi, Kazuki Sato, Rintaro Iwata Hara, Takeshi Wada

Abstract

Recently, double-stranded oligonucleotide therapeutics with A-type duplex structures such as short interfering RNAs have gained considerable attention. We have reported the synthesis of cationic oligosaccharides that selectively bind to A-type oligonucleotide duplexes. In particular, oligodiaminogalactose (ODAGal) has a strong stabilizing effect on A-type oligonucleotide duplexes. However, an efficient synthetic method has not been established for ODAGals and the properties of ODAGals have been investigated only up to 4mer. The most crucial problem of the synthesis was side reactions on a p-methoxybenzyl (PMB) protecting group of a 3-hydroxy group. In this paper, the benzyl (Bn) group was chosen as a protecting group of the 3-hydroxy group to suppress the side reactions on protecting groups, and the yields of glycosylation reactions were significantly improved. Moreover, optimization of the conditions for the deprotection of the Bn groups allowed the efficient synthesis of fully deprotected ODAGals, and ODAGal 5mer and 6mer were synthesized for the first time. In addition, we systematically investigated the effects of these ODAGals on the properties of several oligonucleotide duplexes. It was found that ODAGal 4-6mers stabilized the A-type oligonucleotide duplexes thermally and biologically, typically without their structural changes and the effect was notable with longer ODAGals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。