Tumor-targeting oxidative stress nanoamplifiers as anticancer nanomedicine with immunostimulating activity

靶向肿瘤的氧化应激纳米放大器作为具有免疫刺激活性的抗癌纳米药物

阅读:8
作者:Nanhee Song, Miran Park, Nuri Kim, Yujin Lee, Eunkyeong Jung, Dongwon Lee

Abstract

Compared to normal cells, cancer cells are more susceptible to insults of prooxidants that generate ROS (reactive oxygen species) or scavenge antioxidants such as glutathione (GSH). Cancer cells undergo immunogenic cell death (ICD) by elevated oxidative stress. Herein, we report rationally designed F-ssPBCA nanoparticles as a tumor-targeting prooxidant, which generates ROS and scavenges GSH simultaneously to cooperatively amplify oxidative stress, leading to ICD. Prooxidant F-ssPBCA nanoparticles are composed of a disulfide-bridged GSH scavenging dimeric prodrug (ssPB) that self-assembles to form nanoconstructs and encapsulates ROS-generating BCA (benzoyloxy cinnamaldehyde). F-ssPBCA nanoparticles significantly elevate oxidative stress to kill cancer cells and also evoke ICD featured by the release of CRT (calreticulin), HMGB-1 (high mobility group box-1), and adenosine triphosphate (ATP). Animal studies revealed that F-ssPBCA nanoparticles accumulate in tumors preferentially and suppress tumor growth effectively. The results of this study demonstrate that prooxidant-mediated oxidative stress elevation is a highly effective strategy to kill cancer cells selectively and even evoke abundant ICD. We anticipate that oxidative stress amplifying F-ssPBCA nanoparticles hold tremendous translational potential as a tumor targeted ICD-inducing anticancer nanomedicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。