The effects of preosteoblast-derived exosomes on macrophages and bone in mice

成骨细胞前体衍生的外泌体对小鼠巨噬细胞和骨骼的影响

阅读:5
作者:Sema S Hakki, Lena Batoon, Amy J Koh, Rahasudha Kannan, Veronica Mendoza-Reinoso, John Rubin, Laurie K Mccauley, Hernan Roca

Abstract

The effect of preosteoblast-derived exosomes on bone marrow macrophages (BMMΦ) and calvarial osteoblasts (cOB) was evaluated in vitro, and bone formation studies were performed in vivo in mice. Preosteoblastic MC3T3-E1 clone 4 (MC4) cell-derived exosomes (MC4exo) were characterized with particle tracking, transmission electron microscopy and western blot analysis to validate size, number, shape and phenotypic exosome markers. Exosomes pre-labelled with PKH67 were incubated with BMMΦ and phagocytosis of exosomes was confirmed. To examine the effect of MC4exo on macrophage polarization, BMMΦ were treated with MC4exo and the expression of pro- and anti-inflammatory cytokines was determined by qPCR. MC4exo treatment upregulated mRNA expression of Cd86, Il1β, Ccl2, Rankl and Nos, and downregulated Cd206, Il10 and Tnfα, suggesting a shift towards pro-inflammatory 'M1-like' macrophage polarization. Combination of RANKL and MC4exo increased osteoclast differentiation of BMMΦ in comparison to RANKL alone as analysed by TRAP staining. MC4exo treatment showed no significant effect on calvarial osteoblast mineralization. For in vivo studies, intratibial inoculation of MC4exo (2 × 109 particles in PBS, n = 12) and vehicle control (PBS only, n = 12) was performed in C57Bl/6 mice (8 weeks, male). Micro-CT analyses of the trabecular and cortical bone compartments were assessed at 4 weeks post-injection. Tibial sections were stained for TRAP activity to determine osteoclast presence and immunofluorescence staining was performed to detect osteocalcin (Ocn), osterix (Osx) and F4/80 expression. Intratibial inoculation of MC4exo increased the diaphyseal bone mineral density and trabecular bone volume fraction due to increased trabecular number. This increase in bone was accompanied by a reduction in bone marrow macrophages and osteoclasts at the experimental endpoint. Together, these findings suggest that preosteoblast-derived exosomes enhanced bone formation by influencing macrophage responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。