Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization

短和长几丁质纳米粒子的自组装网络用于油/水界面超稳定

阅读:4
作者:Long Bai, Siqi Huan, Wenchao Xiang, Liang Liu, Yang Yang, Robertus Wahyu N Nugroho, Yimin Fan, Orlando J Rojas

Abstract

Highly charged (zeta potential ζ = +105 mV, acetate counterions) chitin nanoparticles (NCh) of three different average aspect ratios (∼5, 25, and >60) were obtained by low-energy deconstruction of partially deacetylated chitin. The nanoparticles were effective in reducing the interfacial tension and stabilized the oil/water interface via network formation (interfacial dilatational rheology data) becoming effective in stabilizing Pickering systems, depending on NCh size, composition, and formulation variables. The improved interfacial wettability and electrosteric repulsion facilitated control over the nanoparticle's surface coverage on the oil droplets, their aspect ratio and stability against coalescence during long-term storage. Emulsion superstabilization (oil fractions below 0.5) occurred by the microstructuring and thickening effect of NCh that formed networks at concentrations as low as 0.0005 wt %. The ultrasound energy used during emulsion preparation simultaneously reduced the longer nanoparticles, producing very stable, fine oil droplets (diameter ∼1 μm). Our findings indicate that NCh surpasses any reported biobased nanoparticle, including nanocelluloses, for its ability to stabilize interfaces at ultralow concentrations and represent a step-forward in efforts to fully replace surfactants in multiphase systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。