Cytotoxic and Genotoxic Effects of Composite Resins on Cultured Human Gingival Fibroblasts

复合树脂对培养的人牙龈成纤维细胞的细胞毒性和遗传毒性作用

阅读:8
作者:Francesco De Angelis, Domitilla Mandatori, Valeria Schiavone, Francesco Paolo Melito, Silvia Valentinuzzi, Mirco Vadini, Pamela Di Tomo, Lorenzo Vanini, Letizia Pelusi, Caterina Pipino, Piero Del Boccio, Camillo D'Arcangelo, Assunta Pandolfi

Abstract

The aim of the study was to evaluate the cytotoxic and genotoxic potential of five commercially available dental composite resins (CRs), investigating the effect of their quantifiable bisphenol-A-glycidyl-methacrylate (Bis-GMA) and/or triethylene glycol dimethacrylate (TEGDMA) release. Experiments were performed using the method of soaking extracts, which were derived from the immersion of the following CRs in the culture medium: Clearfil-Majesty-ES-2, GrandioSO, and Enamel-plus-HRi (Bis-GMA-based); Enamel-BioFunction and VenusDiamond (Bis-GMA-free). Human Gingival Fibroblasts (hGDFs) were employed as the cellular model to mimic in vitro the oral cavity milieu, where CRs simultaneously release various components. Cell metabolic activity, oxidative stress, and genotoxicity were used as cellular outcomes. Results showed that only VenusDiamond and Enamel-plus-HRi significantly affected the hGDF cell metabolic activity. In accordance with this, although no CR-derived extract induced a significantly detectable oxidative stress, only VenusDiamond and Enamel-plus-HRi induced significant genotoxicity. Our findings showed, for the CRs employed, a cytotoxic and genotoxic potential that did not seem to depend only on the actual Bis-GMA or TEGDMA content. Enamel-BioFunction appeared optimal in terms of cytotoxicity, and similar findings were observed for Clearfil-Majesty-ES-2 despite their different Bis-GMA/TEGDMA release patterns. This suggested that simply excluding one specific monomer from the CR formulation might not steadily turn out as a successful approach for improving their biocompatibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。