Adjustment of light-responsive NADP dynamics in chloroplasts by stromal pH

基质pH调节叶绿体中光响应的NADP动力学

阅读:5
作者:Yusuke Fukuda #, Chinami Ishiyama #, Maki Kawai-Yamada, Shin-Nosuke Hashida

Abstract

Cyclic electron transfer (CET) predominates when NADP+ is at basal levels, early in photosynthetic induction; however, the mechanism underlying the subsequent supply of NADP+ to fully drive steady-state linear electron transfer remains unclear. Here, we investigated whether CET is involved in de novo NADP+ supply in Arabidopsis thaliana and measured chloroplastic NADP dynamics to evaluate responsiveness to variable light, photochemical inhibitors, darkness, and CET activity. The sum of oxidized and reduced forms shows that levels of NADP and NAD increase and decrease, respectively, in response to light; levels of NADP and NAD decrease and increase in the dark, respectively. Moreover, consistent with the pH change in the stroma, the pH preference of chloroplast NAD+ phosphorylation and NADP+ dephosphorylation is alkaline and weakly acidic, respectively. Furthermore, CET is correlated with upregulation of light-responsive NADP level increases and downregulation of dark-responsive NADP level reductions. These findings are consistent with CET helping to regulate NADP pool size via stromal pH regulation under fluctuating light conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。